Pandit Deendayal Petroleum University

16BSP504					Electromagnetic Theory					
Teaching Scheme				eme	Examination Scheme					
	т	Р	с	Hrs/Week	Theory			Practical		Total
					MS	ES	IA	LW	LE/Viva	Marks
4	0	0	4	4	25	50	25			100

COURSE OBJECTIVES

- **T**o introduce various co-ordinate system and review of Maxwell's equations.
- To familiarize the students about the electric field in material space and learn to solve boundary value problems
- **D** To expose the students to various concepts and properties of magneto-static field
- **To identify, formulate and solve fields and electromagnetic waves propagation problems.**

UNIT 1 Review of Vector Calculus	14 Hrs.					
Various co-ordinate system: Cartesian, Cylindrical, Spherical; Divergence, gradient and curl of the vector field in						
various co-ordinate system, divergence and stoke's theorem, Flux lines and flux density, Gauss's law,						
Displacement current density, Generalized Ampere's law, Review of Maxwell's equations, Energy Density in						
electrostatic field.						
UNIT 2 Electric field in material space and boundary value problems	14 Hrs.					
Properties of materials, Convection and conduction current, Polarization in dielectrics, dielectric constant and						
strength, continuity equation and relaxation time, boundary conditions, Poisson's and Laplace's equation,						
Uniqueness Theorem, Method of Images.						
UNIT 3 Magneto-static fields	10 Hrs.					
UNIT 3 Magneto-static fields Biot-Savart's law, Ampere's law and its applications in 3 co-ordinate system, Magnetic flux de						
	nsity, Magnetic					
Biot-Savart's law, Ampere's law and its applications in 3 co-ordinate system, Magnetic flux de	nsity, Magnetic					
Biot-Savart's law, Ampere's law and its applications in 3 co-ordinate system, Magnetic flux de dipole, magnetization in materials, Magnetic boundary conditions, Inductors and inductance, M	nsity, Magnetic					
Biot-Savart's law, Ampere's law and its applications in 3 co-ordinate system, Magnetic flux de dipole, magnetization in materials, Magnetic boundary conditions, Inductors and inductance, M Magnetic circuits. Application –magnetic levitation.	nsity, Magnetic agnetic energy, 12 Hrs.					
Biot-Savart's law, Ampere's law and its applications in 3 co-ordinate system, Magnetic flux de dipole, magnetization in materials, Magnetic boundary conditions, Inductors and inductance, M Magnetic circuits. Application –magnetic levitation. UNIT 4 EM wave propagation and waveguides	nsity, Magnetic agnetic energy, 12 Hrs. , Reflection of					
Biot-Savart's law, Ampere's law and its applications in 3 co-ordinate system, Magnetic flux de dipole, magnetization in materials, Magnetic boundary conditions, Inductors and inductance, M Magnetic circuits. Application –magnetic levitation. UNIT 4 EM wave propagation and waveguides Plane waves in free space-good conductors, lossless dielectrics, power and the Poynting Vector	nsity, Magnetic agnetic energy, 12 Hrs. , Reflection of					

COURSE OUTCOMES

On completion of the course, student will be able to

- CO1 define and recognize different co-ordinate systems and techniques of vector calculus to understand different concepts of electromagnetic field theory
- CO2 explain fundamental laws governing electromagnetic fields and evaluate the physical quantities of EM fields in different media using the fundamental laws.
- CO3- demonstrate an ability to solve various boundary value problems dealing with real world problems.
- CO4 design electromagnetic energy storage devices and choose suitable materials required to assemble such storage devices.
- CO5 deduce and justify the concepts of electromagnetic waves, means of transporting energy or information, in the form of radio waves, TV signals etc.
- CO6 solve the numerical based on the various concepts of electromagnetic field theory.
 - 1. Berkeley Series Vol II (Electricity and Magnetism) E.M. Purcell (Tata McGraw-Hill).
 - 2. Electromagnetics by B B laud, new age international (P) Ltd.
 - 3. Electricity and Magnetism, Edward M. Purcell, 1986 McGraw-Hill Education.
 - 4. Elements of electromagnetics, Mathew N. O. Sadiku, Oxford University Press.

TEXT/REFERENCE BOOKS

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Max. Marks: 100
Part A/Question: <details></details>
Part B/Question: <details></details>

Exam Duration: 3 Hrs <> Marks

<> Marks